Selected Publications

  • Mateen: Adaptive Ensemble Learning for Network Anomaly Detection, F. Alotaibi, S. Maffeis. RAID 2024. [PDF]
  • Differentially Private and Adversarially Robust Machine Learning: An Empirical Evaluation, J. Thakkar, G. Zizzo, S. Maffeis. PPAI@AAAI 2024. [arXiv]
  • Elevating Defenses: Bridging Adversarial Training and Watermarking for Model Resilience, J. Thakkar, G. Zizzo, S. Maffeis. DAI@AAAI 2024. [arXiv]
  • Rasd: Semantic Shift Detection and Adaptation for Multi-Classification NIDS, F. Alotaibi, S. Maffeis. IFIPSEC 2024. [PDF]
  • SQIRL: Grey-Box Detection of SQL Injection Vulnerabilities Using Reinforcement Learning, S. Al Wahaibi, M. Foley, S. Maffeis. USENIX Security 2023. [PDF]
  • Adaptive Experimental Design for Intrusion Data Collection, K. Highnam, Z. Hanif, E. Van Vogt, S. Parbhoo, S. Maffeis, N. Jennings. CAMLIS 2023. [PDF]
  • EarlyCrow: Detecting APT Malware Command and Control Over HTTP(S) Using Contextual Summaries, A. Alageel, S. Maffeis. ISC 2022. [PDF]
  • HAXSS: Hierarchical Reinforcement Learning for XSS Payload Generation, M. Foley, S. Maffeis. IEEE TrustCom 2022. [PDF]
  • VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detections, H. Hanif, S. Maffeis. IEEE IJCNN 2022. [PDF]
  • A Hybrid Graph Neural Network Approach for Detecting PHP Vulnerabilities, R. Rabheru, H. Hanif, S. Maffeis. IEEE DSC 2022. [PDF]
  • Certified Federated Adversarial Training, G. Zizzo, A. Rawat, M. Sinn, S. Maffeis, C. Hankin. NFFL@NeurIPS 2021. [PDF]
  • Hawk-Eye: Holistic Detection of APT Command and Control Domains, A. Alageel, S. Maffeis. ACM SAC 2021, (Security Track). [PDF]